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1 Introduction

A zk-SNARK is a succinct, non-interactive zero-knowledge argument of knowledge, which enables
a prover to convince a verifier of the correctness of a relation (represented as a circuit) without
revealing any underlying private information, known as the witness. The most successful use
cases are on Ethereum, where zk-SNARKs are utilized for private transactions (e.g., Tornado
Cash), cross-chain bridge (e.g., Polyhedra) and Layer-2 rollups (e.g., zkSync and Scroll). Other
applications include verifiable machine learning (e.g., zkCNN [8]), decentralized identity (e.g.,
zkLogin [1]) and privacy-preserving smart contracts (e.g., Zether [2]).

Privacy-preserving Proof Delegation. Although we have known how to generate a zk-
SNARK proof in a relatively short time (e.g., linear time with respect to the circuit size) or
produce a proof with constant size, a major challenge of modern zk-SNARKs is that when the
circuit to be proven is very large, the proof generation still requires substantial time and memory
resources. This makes proof generation prohibitively expensive. For example, an Ethereum
user may need to prove that his wallet is among 1,024 wallets without revealing his private key.
However, since the circuit for proving an Ethereum EdDSA signature typically requires more
than 220 gates, the overall circuit size could reach a billion-level scale. Generating such a circuit
is infeasible for an average user.

A naive idea is to delegate the task of proof generation to a powerful server. However,
this approach is typically infeasible because proof generation requires the client’s secret witness,
which is sensitive and cannot be disclosed. Therefore, an important research topic is Privacy-
preserving Proof Delegation, allowing clients to delegate the proof generation to powerful servers
while ensuring that the clients’ witness remains confidential. In this research explainer, we aim
to briefly present the research progress on this issue.

Potential Application. This topic enables the possibility of an attractive scenario where nu-
merous resource-constrained clients delegate the computation of their proofs (for a certain price)
to multiple miners with strong computational capabilities, all while ensuring that the clients’ sen-
sitive information remains private. This give rise to the potential value of a proof market, which
operates similarly to a DePIN. Users with idle resources can utilize them for privacy-preserving
proof delegation, thereby earning a certain profit. We believe that an important value of this ap-
plication lies in lowering the barrier for ordinary users to access zk-SNARKs, thereby promoting
its widespread adoption. This scenario also inspires further research possibilities, such as how to
ensure the fairness of auctions.

2 Possible Solutions

In this section, we provide a brief review of possible solutions on proof delegation. Below, we
use TP and SP to denote the client’s time and space complexity for generating a proof locally
(without delegation), respectively.
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Distributed Proof Generation. An inappropriate approach is to directly delegate the proof
generation to a server, which may then distribute this task across multiple machines, without
considering the privacy of the client’s witness. This solution is called distributed proof generation
(diZK), where the server employs multiple machines, each responsible for a portion of the proof
generation workload.

Although not suitable for our purpose, this approach does provide us with a performance
target to reference: we now know that in a diZK system composed of N machines, the time
and space complexity per server can be reduced to O

(
TP
N

)
and O

(
SP
N

)
, respectively, while the

communication cost per server remains nearly constant [9], which is highly efficient. Therefore,
can we achieve similar performance while preserving the client’s witness privacy?

Collaborative Proof Generation. The first attempt is collaborative proof generation (coZK),
where the prover’s private witness is distributed to several parties (servers) using a multiparty
computation (MPC) technique called secret-sharing. These parties then jointly run an MPC
protocol, called collaborative zk-SNARK [11], to generate a proof for a given circuit. Since the
witness is shared among multiple parties, the privacy of the witness is preserved. However, the
main challenge lies in designing an as-aforementioned-efficient protocol that can be applied to
large-scale applications. For instance, [5] implemented coZK for several SNARKs like Groth16 [7]
and Plonk [4]. However, their protocol is imperfect. In their coZK system with N parties, N − 1
parties only need to bear O

(
TP
N

)
and O

(
SP
N

)
in terms of time and space complexity. Yet, it

requires a particularly powerful leader to handle most of the overhead, bearing O(TP) and O(SP)
in time and space complexity. Additionally, the protocol incurs O(C) communication overhead.
As a result, this approach is not suitable for large-scale applications.

In our previous research [10], we showed that scalable coZK can indeed be achieved. The result
eliminates the need for a particularly powerful leader. For data-parallel circuits, our collaborative
Libra [12] allows each party to bear only O

(
TP
N

)
and O

(
SP
N

)
in terms of time and space complexity,

with the total communication overhead being sub-linear. For general circuits, however, the total
communication overhead of our collaborative HyperPlonk [3] is still O(C), although this overhead
can be distributed among N parties. Therefore, a still-remaining open question is whether it
is possible to achieve sub-linear communication overhead for general circuits in the context of
privacy-preserving proof delegation.

Oblivious Proof Generation. We are exploring a new direction that aims to address the
above challenges through a novel notion called oblivious proof generation (obZK). The core of
this approach lies in utilizing a technique known as homomorphic encryption. The idea is to
allow a client to send an encrypted witness to multiple servers, which can perform the SNARK
prover algorithm directly on the encrypted data and return the (ciphertext-based) proof to the
client. Finally, the client decrypts the ciphertext to obtain the real proof. A key feature of
homomorphic encryption is that it requires only a single round of communication between the
client and the server(s), with no communication needed between the servers themselves. This
effectively overcomes the issue of excessive inter-party communication overhead in coZK schemes.

The most similar concept to the goal of the above proposal was proposed in [6], but their
work remains theoretical, and currently, no practical implementation or concrete solution has
been developed yet.
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